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A mathematical development of the relationship between the fundamental kinetics and the tem- 
perature versus time curves for catalyst deactivation is presented. It is demonstrated that a very 
large reaction order for fouling, which decreases as the catalyst fouls, can account for typically 
observed S-shaped temperature versus time curves for reactions involving hydrocarbons under 
reducing conditions. 0 1986 Academic Press, Inc 

INTRODUCTION 

In industrial reactors the inlet tempera- 
ture is raised to compensate for catalyst dc- 
activation. This allows a constant amount 
of feedstock to be processed by a catalytic 
reactor over a given length of time, despite 
the deactivation phenomena. In general, 
the temperature versus time history is a 
monotonically increasing function, T = 
T(t). The second derivative of the T versus 
t curve may be either positive or negative. 
In many cases the curvature is initially neg- 
ative, but increases with time, resulting in 
an inflection point prior to a region of posi- 
tive curvature. There are many examples of 
this phenomenon in the literature (1-7). 

Catalyst deactivation is often modeled 
using simple separable power-law activity 
factors (8, 9). This technique is extremely 
useful; however, there are limitations on 
the applicability of this model. In order to 
explain a wide range of fouling data on a 
single model system with a separable 
power-law model, it was necessary to allow 
the “order of deactivation” to depend on 
the activity (10). This variable reaction or- 
der can be rationalized on the basis of a 
simple multiplet model, in which catalyst 
fouling occurs on successively smaller site 
ensembles as the catalyst fouls (II). It is a 
reasonable consequence of the extinction 

of large site ensembles prior to that of 
smaller site ensembles, as anticipated by 
Herrington and Rideal (12). 

The purpose of this paper is to demon- 
strate the relationship between the funda- 
mental kinetic parameters used in the sepa- 
rable power-law models and the general 
shape of empirical temperature versus time 
curves for deactivating systems. 

DEACTIVATION OF A WELL-MIXED 
REACTOR (CSTR) 

The following items serve as a descrip- 
tion of the reaction engineering system ini- 
tially analyzed and form the basis for the 
mathematical treatment. In subsequent sys- 
tems certain of these constraints are re- 
laxed. 

1. The temperature is raised to maintain a 
constant conversion in a heterogeneous 
catalytic reactor undergoing deactivation. 

2. The reactant feedrate is held constant 
throughout the entire catalyst life cycle. 

3. The reactor is well-mixed, held at uni- 
form temperature, and continuously fed 
(Ideal CSTR) with respect to the fluid 
phase, and a well-mixed batch reactor 
(Ideal STR) with respect to the solid cata- 
lyst phase. 

4. Two reactions occur: the desired reac- 
tion and the deactivation reaction. The de- 
sired reaction is much faster than the deac- 
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tivation reaction. Both reactions can be 
represented by simple power-law kinetics 
in parallel, a separable activity factor, and 
Arrhenius temperature dependence. 

5. No deactivation occurs prior to reach- 
ing the initial steady-state conversion with 
a fresh catalyst. 

6. There are no internal or external trans- 
port effects. 

MATHEMATICAL DEVELOPMENT 

The design equation for the system is 
shown in 

L(T) L 1 XL? - = a’ k,U’d (1 - X,)qDa’ (1) 

where 

a, = separable activity factor for main 
reaction 

k,(T) = rate constant for main reaction at T 
T, To = reactant feed temperature after a 

period of deactivation, and the ini- 
tial feed temperature, respectively. 

X, = fractional conversion of limiting 
reactant 

9 = order of main reaction with respect 
to the limiting reactant 

Da = Damkohler number for the main 
reaction at the initial temperature 
(hkn(To) C;-‘1 

Ia = average residence time 
Co = concentration of the limiting reac- 

tant in the reactor feed. 

Initially, the left-hand side of Eq. (1) is 
unity because a,, is defined as unity. With 
the passage of time, the activity a,,, de- 
creases. However, the right-hand side of 
Eq. (1) will remain constant at a value of 
unity even as the catalyst deactivates be- 
cause we constrain the system to constant 
conversion. Therefore, the temperature 
must be increased to maintain the left-hand 
side to unity. Following appropriate substi- 
tution and rearrangement 

where 
(2) 

(3) 

4, (T) 
1 

0 
- = w yrr (1 + k, ( To) o) I (4) 

and 

where 

(Y = fraction of catalyst sites unfouled 
n = order of the main reaction with re- 

spect to active sites 
0 = dimensionless temperature rise, (T 

- ToYTo 
-y,, = activation energy number for the 

main reaction, AE,,lRTo 
A& = activation energy of the main reac- 

tion 
R = gas law constant. 

Equation (2) can be differentiated with 
respect to time, to obtain the more useful 
activity-temperature relationship 

da CY dY 
dr= n dt 

(6) 

Combining this differential relationship 
with a differential rate expression for the 
deactivation reaction, it is possible in gen- 
eral to relate temperature versus time data 
to the fundamental kinetic parameters. For 
example, consider the rate of loss of active 
sites governed by the simple separable 
power-law rate expression of the form 

da 
dr = -a,,, . k,,,(T) . C:I(I - Xc)‘, (7) 

where 

u,,, = separable activity factor for deac- 
tivation reaction 

k,(T) = rate constant for the deactivation 
reaction at T 

p = order of the deactivation reaction 
with respect to the limiting reac- 
tant for the main reaction. 

As with the main reaction, the activity 
factor can be replaced by a power-law ex- 
pression and the temperature dependence 
of the rate constant can be replaced by an 
Arrhenius factor to yield, respectively, 

a, = ffm (8) 
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and 

kn0-l - 8 
km (To) exp 1 Ym (1 + e) . I (9) 

Substituting Eqs. (8) and (9) into (7) gives 

da 
dt= -amk,(To)Cij(l - X,)p exp(sY), (10) 

where 

m = order of the deactivation reaction 
with respect to active sites 

ym = activation energy number for the 
deactivation reaction To, AE,,IRTo 

AE,,, = activation energy of the deactiva- 
tion reaction 

E 3 activation energy ratio 
AEm y,n 

=%=3/n’ 

From Eqs. (2), (6), and (10) we get 

dY 
- = exp@Y), dr 

where 

and 

T = n * k,(To)Cp,( 1 - X,)Pt 

m-1 is=&- y--. ( 1 

(11) 

(12) 

(13) 

The dimensionless time, r, is equal to the 
Damkohler number of the deactivation re- 
action, times the order of the main reaction 
it. 6 is equal to a weighted difference in the 
activation energy numbers. The weighting 
factor (m - 1)/n is a multiplier in front of 
the activation energy number for the main 
reaction yn . 

Equation (11) can be integrated over 
time, using the initial condition of Y = 0 at 7 
= 0, to give the resulting temperature ver- 
sus time history 

1 - e-sy = 67. (14) 

Alternately, Eq. (11) can be differenti- 
ated with respect to time and rearranged, to 
obtain the resulting equation for the curva- 
ture of the temperature versus time plot 

2 = p-y, + 2(1 + l9)](1 + l9)2 

The only factor on the right-hand side of 
Eq. (15) that can be less than zero is that 
enclosed in brackets which we define here 
as, A, for convenience. In terms of real 
quantities 

A = ” [z - + + 2-3, 
(16) 

There are three possible cases as shown 
by Ho (13): 

A > 0: the first derivative of T vs t in- 
creases monotonically (positive 
curvature) 

A = 0: the slope of T vs t is constant (zero 
curvature) 

A > 0: the slope of T vs t decreases mono- 
tonically (negative curvature). 

Ho stated that if m - l/n > E + (T/~J~), 
then the curve would begin with a negative 
curvature. Then as T increases, the term T/ 
ynTo increases and would account for a pos- 
itive curvature. However, the quantities 
AE,,lAE,,, m, and n are constants for 
power-law systems; T/To varies in practical 
situations from about 1 to 1.2 during the 
lifetime of the catalyst; and the value of the 
Arrhenius number, y,,, for the main reac- 
tion is of the order of 20. The terms in the 
brackets of Eq. (16) are AE,,lAE,, = 2-4, rn 
- 1 = O-5, and 2TIy,To = 0. I-0.2. The only 
term that changes during deactivation is 2Tl 
ynTo and it is too small to affect the magni- 
tude of A for typical reaction parameters. 
Accordingly, the sign of A does not change 
during deactivation and the second deriva- 
tive is essentially constant for systems hav- 
ing constant kinetic orders. 

It is much more likely that a variation in 
one or more of the kinetic parameters in the 
first two terms of Eq. (16) accounts for the 
sign change. The quantity (m - 1)/n varies 
with kinetic orders of the deactivation and 
main reactions. It has been noted elsewhere 
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FIG. I. Characteristic plot for multiplet model in a 
CSTR. 

(11) that this quantity can start out at a 
value of about 5 for a fresh catalyst and 
decrease to a value of about 2 for a severely 
fouled catalyst where the main reaction is 
first order. This was based on a correlation 
of activity versus time data for a wide-range 
of reaction systems and conditions (10). 

Using this model for a practical range of 
activation energies and temperatures, the 
value of (m - 1)/n is about 5 and A is a 
negative number, during the early stages of 
deactivation. Then, as the catalyst fouls, 
the value of (m - 1)/n decreases to about 2 
and A becomes a positive number, resulting 
in an inflection point in the T versus t curve. 

A deactivation law exhibiting these char- 
acteristics has the form (II) 

da 
dt= -Cl - -W%nU) g2 -& (17) 

where 

w = exp(h/RT) 
A = bond energy with the surface. 

From Eqs. (5), (6), (9), and (17) and simpli- 
fying, we get 

dZ -=- 
dr’ (18) 

where it is assumed that n = 1 and where 

z = off 

, _ Wo)(l - XJ’% 7 - &r (19) 

The behavior of the multiplet model in a 
CSTR is shown in Fig. 1. Y is plotted as the 
ordinate instead of 8. However, in the 
range of the graph they are almost propor- 
tional. Note that the result depends only 
upon a single parameter E which is the ratio 
of the activation energies for deactivation 
and the main reaction. The physical signifi- 
cance of the deactivation model (Eq. (18)), 
including factor w, has been discussed else- 
where (II). 

DEACTIVATION OF A PLUG FLOW REACTOR 
(PFR) 

The previous treatment is of interest 
from the analytical point of view because it 
is simple to understand the behavior of a 
system in which the conditions in the reac- 
tor do not vary spatially. Most industrial 
catalytic reactors, however, exhibit spatial 
variation in reaction conditions. 

The governing equations to describe the 
plug flow reactor are outlined analogous to 
those for the CSTR. 

dx 
(1 - ‘Jo4 = anexp 

k(T,,)C;I-’ dl 
11 

where 

1 = reactor length coordinate 
M = velocity, 

where (Y” is the activity in accordance with 
Eq. (3). When t = 0; 8 = 0 and (Y = 1, it 
follows that 

I 
XC dx = WoG-‘L 
0 (l-X)4 I( = Da, (21) 

where L = length of the PFR. 
If the conversion X, is fixed, then Da is 

known from the integration of the left-hand 
side of Eq. (21). Using the result, Eq. (20) 
can be written as 

1 
I 
xc dx 

Da 0 (1 -x)4 

= exp[&} 1; a” dz = 1. (22) 
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Dimensionless Time, T  

FIG. 2. Dependence of T versus r curves on 6. 

In order to solve Eq. (22) we must, in gen- 
eral, know a deactivation rate law in order 
to express (Y as a function of z and time. 

A particularly simple and useful solution 
obtains from a rate law of the form 

dff -k dt = mcP. (23) 

For this case (Y is not a function of z and the 
right-hand side of Eq. (22) becomes 

Yd 
1 I - Tz a?exp 1+8 1. 

Differentiating Eq. (24) and substituting 
Eq. (23) for daldt and simplifying yields 

where 

dY 
- = exp@Y), 
dr’ 

(25) 

and 6 is defined by 
is identical to Eq. 

n&n UcJt 
Yn 

Eq. (13). Equation (25) 
(11) and therefore the 

same analysis applies to the behavior of this 
PFR and a CSTR. 

More realistically the rate of deactivation 
should depend upon the local conversion 
such as that shown in Eq. (7). Equation (22) 
still applies, but the form of Eq. (7) dictates 

that (Y is a function of position in the reactor 
as well as time and an analytical solution is 
no longer apparent. A numerical integration 
of Eqs. (22) and (10) yields Fig. 2 in which it 
is apparent that the same criterion on the 
curvature holds approximately. This simi- 
lar behavior between lumped parameter 
and distributed parameter systems is not 
uncommon. Therefore, we again learn that 
for both a PFR and a CSTR, no inflection 
can be observed in the 13 versus r curve for a 
constant value of m  in the deactivation rate 
law. 

If we now consider the PFR with the rate 
law of Eq. (17), then Eqs. (17) and (22) must 
be solved simultaneously. The procedure is 
as follows: initially (Y is unity for all posi- 
tions, z, therefore, the conversion, X,, can 
then be calculated as a function of z. In 
a time interval, AT, the local values of (Y can 
then be calculated using Eq. (17). Then 
from Eq. (22), a new value of a 8 can be 
calculated. Again, using Eq. (17) new local 
values of a! can be again calculated. The 
new X profile can be calculated from Eq. 
(22). The computation is continued to ob- 
tain a plot of 19 versus 7, as shown in Fig. 3 
for selected values of y,, and XF, and for y,,, 
= 65. 

Two points are obvious from Fig. 3. 
First, as conversion is increased, the life- 
time of the catalyst increases. Second, as 
the activation energy of the main reaction 
increases, the lifetime on stream increases. 
Both result from the fact that the tempera- 
ture does not need to be raised as much to 
maintain constant conversion thereby de- 

T 
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FIG. 3. Dependence of 0 versus 7 curves for PFR. 
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FIG. 4. Similarity temperature profiles for a PFK. FIG. 5. Typical T versus t curves for various kinetic 
models. 

laying the onset of catastrophic deactiva- 
tion. 

It is interesting to normalize the time co- 
ordinate on Fig. 3 by the time necessary to 
raise 0 to 0.175. Reploting them on Fig. 4 
shows that the temperature-time profiles 
are remarkably similar. 

Finally, some profiles were integrated to 
fit the data presented by Tamm et al. (6). 
The results are shown in Fig. 5. It is signifi- 
cant that from the results presented earlier 
in this paper that no constant power-law 
model can fit the curve. However, a good fit 
can be obtained using the multiplet model. 
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